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We carefully examine two mechanisms—coherence resonance and self-induced stochastic resonance—by
which small random perturbations of excitable systems with large time scale separation may lead to the
emergence of new coherent behaviors in the form of limit cycles. We analyze what controls the degree of
coherence in these two mechanisms and classify their very different properties. In particular we show that
coherence resonance arises only at the onset of bifurcation and is rather insensitive against variations in the
noise amplitude and the time scale separation ratio. In contrast, self-induced stochastic resonance may arise
away from bifurcations and the properties of the limit cycle it induces are controlled by both the noise
amplitude and the time scale separation ratio.
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I. INTRODUCTION

Understanding the effect of random perturbations on non-
linear dynamical systems is a challenge across many disci-
plines of science. These perturbations may be small and ir-
relevant, or may be so large as to overwhelm the dynamics.
More interestingly, they can be small and yet result in pro-
found qualitative changes in the system behavior without
introducing any significant randomness �1,2�. This observa-
tion has attracted a lot of attention recently because of its
relevance, e.g., in biological systems �see, e.g. �3–6��.

An important class of nonlinear dynamical systems in
which this phenomenon may occur are excitable systems.
Excitable systems arise in a wide variety of areas which in-
clude climate dynamics, semiconductors, chemical reactions,
lasers, combustion, neural systems, cardiovascular tissues,
etc. and are especially common in biology �7–9�. A canonical
example of a biological excitable system is a nerve cell. The
defining property of all these systems is the way they re-
spond to perturbations. If a perturbation is sufficiently small,
the system quickly relaxes back into the unique stable steady
state. On the other hand, once the perturbation reaches a
certain threshold, a large transient response �as, e.g., an ac-
tion potential in nerve cells� is triggered before the system
recovers to its steady state.

Noise-driven excitable systems can produce dynamical re-
sponses which possess a high degree of coherence and yet
are significantly different from what is observed in the ab-
sence of noise. One mechanism by which this phenomenon
can occur is coherence resonance �CR�. It was first proposed
in the work of Pikovsky and Kurths �10� and since then
attracted considerable attention �see, e.g. �11–19�, and also
�20� for a recent extensive review�. In CR, a dynamical sys-
tem near but before Hopf bifurcation threshold is driven by
small noise towards the deterministic limit cycle which
emerges right after the bifurcation. Very recently, an alterna-
tive mechanism, termed self-induced stochastic resonance
�SISR�, has been proposed �21�. In SISR small random per-
turbations also lead to the emergence of a coherent limit

cycle behavior, but in a profoundly different way and with
different properties than in CR �see also �22��.

The purpose of this paper is to give a detailed analysis of
CR and SISR, carefully establish when and why these
mechanisms occur, and distinguish the different properties of
the limit cycles they induce. In particular, we characterize
what controls the degree of coherence of these noise-induced
limit cycles, and under what conditions their coherence can
be made arbitrarily large, leading to an essentially determin-
istic behavior out of noise.

To this end, we will focus on the FitzHugh-Nagumo
model. This model is often considered as a minimal carica-
ture of more realistic models of excitable systems �see, e.g.,
�7��. We study the following version of the FitzHugh-
Nagumo model perturbed by noise:

�ẋ = x − 1
3x3 − y + ���1Ẇ1, �1a�

ẏ = x + a + �2Ẇ2, �1b�

where a ,� ,�1, and �2 are positive constants, and Ẇ1 and Ẇ2
are independent standard white-noises. With �1 set to zero,
Eqs. �1a� and �1b� become precisely the original system stud-
ied by Pikovsky and Kurths in their pioneering paper on CR
�10�. With �2=0 instead, �1a� and �1b� display SISR �21�, as
we will show below.

At first sight, one may suppose that the noise will have a
similar effect regardless of whether it is added to �1a� or
�1b�, or both. And yet numerical solutions of �1a� and �1b�
shown in Figs. 1 and 2 reveal a marked difference between
the two, especially at smaller values of � �36�.

Figure 1 shows the histograms of the time interval T be-
tween the successive oscillations in x obtained from the nu-
merical solution of the stochastic differential equations �1a�
and �1b� for a=1.05, with �=10−2 in the upper two panels,
Figs. 1�a� and 1�b�, and with �=10−4 in the lower two panels,
Figs. 1�c� and 1�d�. In the left two panels, Figs. 1�a� and 1�c�,
we take �1=0 ,�2=0.2, leading to CR. In the right two pan-
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els, Figs. 1�b� and 1�d�, we take �1=0.2,�2=0, leading to
SISR. In agreement with the general CR mechanism �see
Sec. III�, one can see from Figs. 1�a� and 1�c� that the statis-
tics of T are rather insensitive to the time scale separation
ratio when the noise is added only to �1b� and not to �1a�. In
contrast, SISR �see Sec. IV� is sensitive to the time scale
separation ratio and one sees a significant difference between
Figs. 1�b� and 1�d�; in the latter the degree of coherence has
dramatically increased and, furthermore, the average period
�T� of oscillations decreased by a factor of 1.5, far exceeding
the uncertainty in T, as measured by its standard deviation
�T.

This difference is also observed in the time series and
phase portrait of the numerical solutions which are shown in
Figs. 2. The difference between Fig. 2�a�, showing an in-
stance of CR, and Fig. 2�b�, showing an instance of SISR, is
striking. In the case of CR, the limit cycle is essentially a
precursor of a deterministic limit cycle obtained upon cross-
ing the Hopf bifurcation in the limit �→0. In contrast, the
limit cycle in SISR does not follow any trajectory that exists
in the system’s deterministic dynamics for any parameters,
yet it shows remarkable coherence in period �substantially
greater than in the case of CR for the same parameters� de-
spite a noticeable effect of noise on the trajectories.

The remainder of this paper is devoted to explaining the
differences in the observations above and clarifying the na-
ture of both mechanisms by presenting an asymptotic theory
of these noise-induced phenomena in the limit of perfect
coherence. Since the condition ��1 of strong time scale
separation is required for both CR and SISR �10,21�, we will
assume it in all the arguments below.

The paper is organized as follows. In Sec. II we summa-
rize the properties of the noise-free system in �1a� and �1b�
with strong time scale separation. In Sec. III we consider the
situation in which the CR mechanism becomes perfectly co-
herent. In Sec. IV we present an asymptotic theory of SISR
in the considered model. In Sec. V we consider the behavior
of SISR near the threshold of the Hopf bifurcation. In Sec.
VI we analyze what happens if noise terms are added to both
equations in �1a� and �1b�. Finally we draw some conclu-
sions in Sec. VII.

II. THE DETERMINISTIC DYNAMICS

In this section we briefly recall the main features of the
deterministic system in �1a� and �1b�:

�ẋ = x − 1
3x3 − y , �2a�

ẏ = x + a , �2b�

for ��1 �see, e.g., �23,24��. Since �2a� and �2b� are invariant
under the transformation �x ,y ,a�→ �−x ,−y ,−a�, we do not
need to consider the case a�0 separately. The system in �2a�
and �2b� has a unique fixed point at �x ,y�= �x� ,y��, where

x� = − a, y� = − a + 1
3a3. �3�

Linearizing �2a� and �2b� around the fixed point with respect
to the functions x=x�+c1e−�t ,y=y�+c2e−�t, we find that �
=�±�a�, with

FIG. 1. The histograms of the time interval T between successive oscillations in x obtained from numerical solution of �1� with a
=1.05. �a� �=10−2 ,�1=0,�2=0.2 �CR�; �b� �=10−2 ,�1=0.2,�2=0 �SISR�; �c� �=10−4 ,�1=0,�2=0.2 �CR�; �d� �=10−4 ,�1=0.2,�2=0
�SISR�.
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�±�a� =
a2 − 1 ± ��a2 − 1�2 − 4�

2�
. �4�

Therefore, the fixed point is stable if and only if �a��1 and,
in fact, is globally attracting. At a=1 the system undergoes a
Hopf bifurcation, and so for all �a��1 there exists a limit
cycle which is globally stable �25�. Note that a peculiar fea-
ture of systems with strong time scale separation is that the
normal form expansion near a bifurcation point is valid only
in a very small neighborhood of the bifurcation �17,18�. For
this reason the fixed point becomes a stable node rather than
a focus for a�aN, where

aN = �1 + 2�1/2 = 1 + O��1/2� , �5�

see Eq. �4�. Also, for the same reason the limit cycle has
large amplitude when a approaches 1 from above provided
that �→0 sufficiently fast �26,27�.

When �a��1 and �→0, the motion on the limit cycle is
broken up into fast and slow motions �23,24�. We define SL
to be the attracting branch of the x nullcline where y=x
− 1

3x3 on the left, defined for x� �−	 ,−1�, and SR to be the
attracting branch on the right, defined for x� �1,	�. During
slow motions �on the O�1� time scale� the trajectory follows
SL and SR:

Slow: ẋ =
x + a

1 − x2 , y = x − 1
3x3. �6�

This is followed by abrupt jumps �on the O��� time scale�
from SL to SR and back, when the trajectory reaches the
respective knees of SL and SR, located at �−1,− 2

3
� and �1, 2

3
�:

Fast: �ẋ = x − 1
3x3 − y, y = ± 2

3 . �7�

See Fig. 3 for a summary. Since the trajectory spends most of
the time in the slow motions, the period of the limit cycle is
asymptotically the time spent on SL and SR in one cycle:

TLC�a� = 	
−2

−1 1 − x2

x + a
dx + 	

2

1 1 − x2

x + a
dx �8�

=3 − �1 − a2�ln
4 − a2

1 − a2� . �9�

As was already noted above, when a approaches the point of
the Hopf bifurcation of �x� ,y��, in the limit �→0 �taken
first� we have

lim
a→1−

TLC�a� = 3, �10�

which is different from 2
 /�0, where �0=Im�+�1�=�−1/2 is
the frequency at the onset of the Hopf bifurcation �for more
detailed discussion, see �17,18��.

In contrast, when �a��1, the system in �2a� and �2b� is
excitable �for a general discussion of excitability and its ap-

FIG. 2. Two types of limit cycle behaviors observed in the numerical simulations of �1a� and �1b� with a=1.05. �a� and �c�: �
=10−4 ,�1=0,�2=0.2 �CR�; �b� and �d�: �=10−4 ,�1=0.2,�2=0 �SISR�. In �a� and �b�, the phase portrait is shown, whereas in �c� and �d�, the
time traces of both x and y are shown. In 2�a� and 2�b�, the dotted lines indicate the nullclines.
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plications see, e.g. �7,28,29��. This can be seen from the
phase portrait shown in Fig. 4. In this case, starting with an
arbitrary initial condition, the trajectory is quickly attracted
to either SL or SR. If the initial condition is such that the
trajectory reaches SL first by the fast motion, it subsequently
slides along SL towards the fixed point �x� ,y��, where it
settles forever. If, however, the initial condition is such that
the trajectory reaches SR first, it then slides upward along SR

towards the knee at �x ,y�= �1, 2
3

�, which it reaches in finite
time, then jumps to SL, and proceeds as before. Therefore,
small perturbations around the fixed point will decay right
back to the fixed point, while sufficiently large deviations
from the fixed point will result in transient large-amplitude
excursions before the system returns to the fixed point. Next
we analyze how this picture changes with the inclusion of a
small random perturbation.

III. COHERENCE RESONANCE

Following �10�, consider �1a� and �1b� with �1=0 and a
�1:

�ẋ = x − 1
3x3 − y , �11a�

ẏ = x + a + �2Ẇ2. �11b�

As was shown in �10�, for certain choices of parameters this
systems of stochastic differential equations exhibits coherent
limit cycle behavior �see also early work �30��. In fact, in a
suitable limit of the control parameters � ,a, and �2, the so-
lutions of �11a� and �11b� follow precisely the deterministic
limit cycle discussed in Sec. II when a→1−, as we now
show.

Let us see what conditions the emergence of this cycle
requires. First, one needs that the noise amplitude is small
enough, �2→0. The limiting behavior cannot be determinis-
tic otherwise. As soon as �2→0, one realizes that one must
also have a→1+, i.e., in the limit the deterministic system in
�2a� and �2b� must be at bifurcation threshold. Indeed, if the
noise in �11b� is vanishingly small, �2→0, but a=1+O�1�
and ��1 fixed, then large excursions �defined, e.g., as those
which reach x=0� of the trajectory away from the fixed point

only occur on exponentially long time scale O�ec�2
−2

� and are
random with Poisson statistics �this results from large devia-
tion theory �1��. If �2→0, no coherent oscillations are there-
fore possible if �a� is bounded away from 1.

On the other hand, the noise can destabilize the point
�x� ,y�� if this point is near the onset of instability to begin
with, i.e. �x� ,y��→ �−1,− 2

3
�, and this requires that a→1+

and �2→0 jointly. Now, in order for the noise to act as soon
as the trajectory reaches �x� ,y��, that is, in order to avoid that
the trajectory stick to this point for too long and lose coher-
ence, one has to require that the noise be bounded below by
a function of a−1. More specifically, we show that one needs

�2 � C1
 b3

ln b−1�1/2

, b = a − 1, �12�

for some constant C1�0 when �2→0 and b→0+. To see
this, we look at the picture locally around the fixed point by
rescaling the variables as


 = b−1�x + a�, � = b−2�y + a − a3/3�, t = bs . �13�

Using �13� and letting 0�b�1, we rewrite �11� to leading
order as

d
 = b2�−1�− 2
 − � + 
2�ds , �14a�

d� = 
ds + �2b−3/2dWs. �14b�

One can check that the knee of SL is now asymptotically at
�
 ,��= �1,−1�, and the 
 nullcline is a quadratic function
with minimum at �1,−1� and zeros at 
=0,2; see Fig. 5. By
direct inspection of �14a� and �14b�, we immediately con-
clude that �2b−3/2 must not go to zero in this scaling. Indeed,
assume for simplicity that a�aN, or, equivalently, that b
�O��1/2�. Then the deterministic dynamics governed by
�14a� and �14b� has a separatrix between the trajectories that

FIG. 3. Phase plane portrait for �2� with �a��1 in the limit �
→0. The limit cycle is shown by the thick solid lines with arrows.
Dashed line indicates the x nullcline.

FIG. 4. Phase plane portrait of the deterministic system �2a� and
�2b� with a=1.05 and �=0.01. The dashed lines show the
nullclines.
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terminate at the fixed point and the trajectories that run off to
infinity in finite time; see Fig. 5 �37�. Since the origin is an
attracting fixed point and the system needs to travel at least
to the separatrix to escape this fixed point, if the noise level
is too small �i.e., when �12� is not satisfied�, then the time �
to reach the separatrix will grow exponentially as

� � becb3�2
−2

→ 	 , �15�

despite b→0. Of course, coherence of the trajectories will be
lost in this case. So, the condition in �12� is necessary in
order to avoid this.

In contrast, if �2�b3/2, it does not matter when and where
the trajectory escapes the vicinity of the fixed point. Indeed,
this will happen with probability 1 at finite s. But t=bs, and
so anything which happens in a finite s time takes place in
zero time in the t time scale.

Once away from the fixed point and the left knee, the
trajectory will not be affected appreciably by the noise since
�2→0. Just as in the case of the deterministic limit cycle
considered in Sec. II, the trajectory will follow a fast motion
described by �7� and land near the point �2,− 2

3
� on SR in O���

time. It then moves up SR to reach the right knee at �1, 2
3

� in
asymptotic time

TLC
R = 	

2

1

�1 − x�dx = 1
2 , �16�

which is obtained by integrating �6� with a=1. After that, the
trajectory falls off onto SL at �−2, 2

3
� and travels along SL

until it approaches the fixed point. Thus, what makes the CR
mechanism work is the fact that in the limit �→0,a→1+,
and �2→0 �in this order� the time to reach an arbitrary fixed
neighborhood of �x� ,y�� is finite �see also �31��:

TLC
L = 	

−2

−1

�1 − x�dx = 5
2 . �17�

Once the trajectory enters a small neighborhood of the
fixed point, it will then take O�b��1 time to escape it to

complete the cycle, in the limit resulting in a deterministic
limit cycle with period

TCR = TCR
R + TCR

L = 3, �18�

which is essentially the same as the one constructed in Sec. II
in the absence of the noise in the limit a→1−; see Figs. 3
and 6. Thus, the coherent limit cycle behavior one gets for
a�1 and �2�1 is a precursor to the deterministic limit cycle
appearing for a�1.

Summarizing, CR arises provided that

� � 1, �1/2 � b � 1, b3/2 � �2 � 1. �19�

The predicted limit cycle agrees well with the numerics
shown in Fig. 2; compare, e.g., Figs. 3 and 6 with Figs. 2�a�
and 2�c�.

Finally we note that the scaling b��1/2 which we chose
for convenience is sufficient to create coherence resonance,
but it may not be necessary. In particular, coherence may
also occur in the narrow range 0�b��1/2 �17,18�, but the
stochastic system is quite complicated to analyze in this
limit.

IV. SELF-INDUCED STOCHASTIC RESONANCE

Consider now �1a� and �1b� with �2=0:

�ẋ = x − 1
3x3 − y + ���1Ẇ1, �20a�

ẏ = x + a . �20b�

The scaling ���1 guarantees that �1 measures the relative
strength of the noise term compared to the deterministic term
x− 1

3x3−y irrespective of the value of �.
As was shown in �21�, noise-driven excitable systems de-

scribed by equations of the type of �20a� and �20b� can also
lead to a deterministic limit cycle in the limit as �1→0 and
�→0. However, the SISR mechanism by which this is
achieved is somewhat more subtle than that of CR, and the
properties of the limit cycle in SISR are very different from
the ones in CR. Let us point out that the idea of SISR was

FIG. 5. Blowup of the deterministic trajectories near the fixed
point when �b−2=0.1. The x nullcline is shown by the thick solid
line. The separatrix is shown by the thick dashed line.

FIG. 6. Asymptotic limit cycle in CR. The solid lines show x�t�
and the dashed lines show y�t� obtained from matching the fast and
slow motions.

TWO DISTINCT MECHANISMS OF COHERENCE IN… PHYSICAL REVIEW E 72, 031105 �2005�

031105-5



first introduced by Freidlin for a model of a noise-driven
mechanical system in Ref. �22� �see also related early work
in Refs. �32,33� in the context of stochastic resonance �34��.

In SISR, it is not required that a→1+. In fact, one can
choose any 1�a��3 and thus be far away from the bifur-
cation threshold. Furthermore, the limit cycle is not the de-
terministic one obtained in the limit as a→1−, and both its
phase portrait and its period can be controlled by a parameter
depending on �1 and �. Next we explain why this is so with
an asymptotic argument.

As in CR, we require that �1→0 since this is the only way
to obtain a deterministic solution. We also let �→0. Then
there exists an open interval I�a�, which depends on a, so
that if

�1
2ln �−1 → C2 �21�

for some constant C2� I�a� as �1→0 and �→0, a determin-
istic limit cycle emerges. This limit cycle can be understood
as the result of keeping the system in a state of perpetual
frustration. The system tries to reach the fixed point �x� ,y��
by sliding down SL, but each time it gets kicked by the noise
towards SR before reaching �x� ,y��. The system then slides
up SR, gets kicked toward SL before reaching the knee, and
again starts sliding down toward �x� ,y��. It can then repeat
this cycle.

To understand the jumping mechanism, we first make the
change of variables t=��, to get

dx = �x − 1
3x3 − y�d� + �1dW�, �22a�

dy = ��x + a�d� . �22b�

Equation �22a� is of the form

dx = −
�V�x,y�

�x
d� + �1dW�,

where V is a double-well potential

V�x,y� = − 1
2x2 + 1

12x4 + xy . �23�

Since y is nearly constant on this time scale from �22b�, y
enters merely as a parameter in �23�. Viewed as a function of
x with y fixed, V�x ,y� is a double-well potential with two
minima located at the value of x where SL and SR intersect
the horizontal line y=const, and a maximum at the intersec-
tion with the unstable branch of the x nullcline �see Fig. 7�.
To be more precise, let us define, for y� �− 2

3 , 2
3

�, the three
roots

x−�y� � x0�y� � x+�y�

of y=x− 1
3x3. The points x±�y� are always local minima of the

potential, and x0�y� is a local maximum. We define

�V+�y� = V„x0�y�,y… − V„x+�y�,y… ,

�V−�y� = V„x0�y�,y… − V„x−�y�,y… .

In each case, �V±�y� is the potential difference between the
local maximum x0�y�, and a local minimum x±�y�, see Fig. 7.
The value of �V+�y� can be easily computed parametrically

in terms of x1=x+�y�. After some straightforward algebra, we
have

�V+ = −
3

4
+

�3

8
x1�4 − x1

2�3/2 −
3

8
x1

2�2 − x1
2� , �24�

and by symmetry �V−�y�=�V+�−y�. The resulting curves are
plotted in Fig. 8.

Going back to �22a� and �22b�, fix y�0 and choose x near
SR. This puts x in the basin of attraction of x+�y� �right well�.
Due to the noise, the process can jump into the left well by
hopping over the barrier. Since the potential barrier it needs
to cross is of size �V+�y�, from Wentzell-Freidlin theory �1�
we know that the crossing time will asymptotically be a
Poisson process with intensity

��y� = C exp„− 2�V+�y�/�1
2
… , �25�

where C is some prefactor. By this we mean that for large T,
the probability of seeing a jump over the barrier is

Prob�jump at y� = 1 − e−��y�T.

FIG. 7. Schematics of the potential V�x ,y� for different values
of y.
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Now let y vary using �22b�. One can see that the time
scale for y to move along SR deterministically is �−1. If the
two time scales happen to match at some point y=y1, then
we will expect a jump at this point y1. Indeed, before the
trajectory reaches y1, the motion on SR is infinitely faster
than the time scale of the jump, and hence this jump is not
observed. But as soon as the trajectory passes y1, the situa-
tion is reversed: the time scale of the jump becomes infi-
nitely faster than the motion on SR and hence the jump hap-
pens instantaneously at y1. From �25�, the matching of time
scales requires that

�−1 
 ��y1� = C exp„2�V+�y1�/�1
2
… ,

and so we must let �1→0,�→0 so that

1

2
�1

2ln��−1� → �V+�y1� .

Notice that to leading order the prefactor C in the intensity
�25� is irrelevant to determine y1

Let us justify this formal argument �see also �22��. Con-
sider a sequence such that

1

2
�1

2ln �−1 → � ,

and say that y1 is such that �V+�y1�=�. Then we claim that
with probability asymptotically close to 1, the system fol-
lows SR until it reaches y=y1, after which it jumps to SL. We
argue as follows: take �x+�y� ,y� for some y�y1, and let this
point evolve according to �22a� and �22b�. Fix dy�0 small
�but O�1� in ��, then one of two things can happen: either the
noise kicks the trajectory to SL before it reaches y+dy, or the
system evolves deterministically to y+dy and stays near SR.
The time we would wait to evolve from y to y+dy is C�−1dy,
whereas the intensity is

��y� = C exp„− 2�V+�y��1
−2
… → C��V+�y�/�.

Thus the probability of jumping before reaching y+dy is

Prob�jump between y and y + dy� = 1 − exp„− ��y�C�−1dy…

= 1 − C exp�− ���V+�y�−��/�� .

For �V+�y���, the second term above is exponentially

close to 1, so the probability to jump is exponentially close
to 0. Similarly, the probability of jumping is exponentially
close to 1 for �V+�y���. Since �V+�y� is a monotone de-
creasing function of y �see Fig. 8�, the system will, with
probability exponentially close to 1, traverse SR until it
reaches y=y1, at which time it jumps to SL. The same argu-
ment will hold for a trajectory on SL, with the modification
that the potential barrier is then �V−�y�, so the trajectory
jumps to the right at the point y=y2, where �V−�y2�=�. Of
course, by symmetry y2���=−y1���.

This can result in the emergence of a limit cycle which is
radically different from the one in CR. The phase portrait of
this limit cycle is composed of the two portions of the stable
branches of the x nullcline between y=y1��� and y=y2���,
together with the horizontal line joining these branches at y1
and y2; see Fig. 9. The period of the cycle is asymptotically
the sum of the times it takes for the deterministic dynamics
to go from y1 to y2 on SL and from y2 to y1 on SR, obtained
from �6�:

FIG. 8. Barrier heights �V± as function of y. The motion along
SL and SR followed by jumps between the two is indicated by the
arrows. The curves �V±�y� intersect at �V=�c2= 3

4 .

FIG. 9. Asymptotic limit cycle in SISR for a=1.05 and �
=0.1842, corresponding to the parameters of the simulation in Figs.
2�b� and 2�d�. In �a�, the solid lines show x�t� and the dashed lines
show y�t� obtained from the asymptotics. In �b�, the thick solid lines
with arrows indicate the limit cycle, and the dashed line is the x
nullcline.
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TSR��,a� = 	
x2���

x3��� 1 − x2

x + a
dx + 	

x4���

x1��� 1 − x2

x + a
dx , �26�

where x1=x+�y1� ,x2=x−�y1� ,x3=x−�y2�, and x4=x+�y2�. Once
again, we can compute TSR�� ,a� parametrically in terms of
x1; see Fig. 10 for the dependence of T on � for a few values
of a. Let us emphasize that the period of the obtained limit
cycle depends non-trivially on the parameters � and a, and,
therefore, can be controlled by the noise without significantly
affecting the limit cycle coherence �see also �21��. The ob-
tained limit cycle for a=1.05 and �=0.1842 shown in Fig. 9
corresponds to the parameters of the simulation in Figs. 2�b�
and 2�d�.

Note that the preceding arguments are valid only when
y��y2, that is, when the point y=y2 can be reached by the
slow dynamics on SL governed by �6�. In view of the mono-
tonicity of �V_�y�, this will happen when ���c1�a�
=�V_�y��. On the other hand, we must also have y2�y1,
which is violated for ���c2= 3

4 �y1=y2=0 at �=�c2�. If � is
chosen larger than �c2, then there is a region of y values for
which the system can jump either left or right on the slow
deterministic time scale, in which case we get nothing like a
coherent orbit. Thus the deterministic limit cycle exists when
�� ��c1 ,�c2�. It is not difficult to see that this interval is not
empty whenever a��3, i.e., when y��0.

Summarizing, the limit cycle due to SISR arises when

� � 1, �1 � 1, 1 � �a� � �3, �27�

provided that

� = 1
2�1

2ln �−1 = O�1�, � � ��c1,�c2� . �28�

Compare this to the numerics in Fig. 2. It is predicted that
the system jumps at y1=−y2=0.4015, which would give a
period TSR=1.534 from the asymptotic theory above. In rea-
sonable agreement with the theory, the system is jumping at
y1=0.5±0.1 and y2=−0.45±0.07, but typically a little later
than the prediction. Also, the observed average period of the
cycle is about 25% more than the theoretical prediction. We
attribute this to the fact that �1=0.2 in the simulations, which
is not very small in practice.

V. SELF-INDUCED STOCHASTIC RESONANCE NEAR
HOPF BIFURCATION

Note that SISR is easier to realize when b→0+, since in
this case

�c1 = 4
3b3 + O�b4� , �29�

and so �c1→0 as b→0+. So, smaller and smaller amounts
of noise are sufficient to initiate SISR as one approaches the
Hopf bifurcation. The SISR limit cycle then becomes closer
and closer to the CR limit cycle, as we have to the leading
order

y1 =
2

3
− 
3�

4
�2/3

, �30�

TSR = 3 − 2b ln�� 3
4��1/3 − b� , �31�

when

b3

ln �−1 � �1
2 �

1

ln �−1 . �32�

Therefore, TSR→3 for b→0 and � fixed, and the limit cycle
becomes the same as one for CR. On the other hand, even in
the limit of a→1+ and �→0 it is still possible to obtain a
limit cycle from SISR that will be qualitatively different
from the one in CR. For this, one needs to choose b→0 and
�→0 jointly in a way that �−�c=O�e−cb−1

�; see �29� and
�31�. Then the trajectory will “stick” in the neighborhood of
the fixed point, but for a fixed deterministic O�1� time, be-
fore jumping onto SR.

VI. THE COMBINED SITUATION

Let us now consider the situation in which both �1 and �2
are nonzero, i.e, we add noise to both equations �1a� and
�1b�. First, it is clear that the CR mechanism will still require
that b=a−1→0+, as well as �1→0,�2→0. Therefore, CR
cannot occur if a is bounded away from 1. In contrast, SISR
does not require that the system be near the bifurcation
threshold, so it will still be feasible for those values of a to
have a deterministic limit cycle, provided that �1 scales as in
�21�. Furthermore, it is clear that the coherence of the result-
ing limit cycle will not be affected by �2�0, as long as it
also vanishes in the limit. Hence, the SISR takes over CR
when a is not close to 1.

On the other hand, if b=a−1→0+, CR and SISR may
compete. But since the graph of the limit cycle of SISR is
always located inside the one of CR �compare Figs. 3 and
9�b��, provided only that the scalings in �27� �together with
�2�1� are satisfied, SISR will again dominate CR. In fact,
the only way for the limit cycle of CR to be observable is
that the amplitude of the noise in �1a� be so small that the
limit cycle in SISR becomes indistinguishable from the one
in CR, as discussed in Sec. V.

VII. CONCLUSIONS

In conclusion, we have performed a careful examination
of two different mechanism by which noise may induce new

FIG. 10. Dependence of T on � �for a few values of a� for the
SISR limit cycle obtained from the asymptotic theory.
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coherent behavior in excitable systems, coherence resonance
�CR� and the self-induced stochastic resonance �SISR�. Us-
ing asymptotic techniques and numerical simulations, we
have identified the distinguished limits in which the consid-
ered effects become perfectly coherent. We also showed that
these two mechanisms have different origins and lead to
qualitatively different behaviors.

The results of our analysis can be summarized as follows.
Both CR and SISR rely on the strong separation of time
scales between the excitatory and the recovery variables, �
�1, and require a sufficient amount of noise for their opera-
tion. However, this is where the similarity between the two
mechanisms ends.

To produce a quasideterministic limit cycle behavior, as
we showed in Sec. III, CR relies on the closeness of the
system to the Hopf bifurcation threshold. CR is robust in the
sense that the coherence of the obtained limit cycle is rather
insensitive to the time scale separation ratio between the fast
and the slow variable �the value of ��1�, and the amplitude
of the noise �the value of �2�1�. On the other hand, in order
for CR to be feasible, the system has to be tuned to be near
the threshold of Hopf bifurcation �a→1+ �, and the distance
away from the bifurcation threshold directly affects the de-
gree of coherence of the cycle. Once the system is near the
bifurcation point, any sufficiently large amount of noise �but
not too large to overwhelm the entire dynamics� will be ca-
pable of inducing the limit cycle behavior. Thus, in CR the
noise plays the role of essentially “smearing out” the region
in the parameter space separating the deterministic limit
cycle parameter region from that of excitability �31�, making
the system “feel” right before bifurcation the deterministic
limit cycle emerging right after bifurcation �for �→0�.

In contrast, as we showed in Sec. IV, SISR is a stochastic
resonance-type phenomenon that does not rely on the close-
ness to any bifurcation point. Thus SISR is robust in the
sense that it does not require fine-tuning of the bifurcation
parameters �in the considered example the value of a�. The
characteristics of the induced limit cycle however depend
nontrivially both on the time scale separation ratio � �weakly
via its logarithm� but more importantly on the amplitude of
the noise �the value of �1�. This signifies a more subtle role
of the noise in the generation of the coherent dynamics in the
SISR mechanism. We also noted in Secs. V and VI that,

topologically, SISR is more robust than CR because the
graph of the SISR limit cycle is located inside the CR one.
Thus CR can only be observed if the noise amplitude in �1a�
is small enough.

Finally, let us point out an interesting feature of both CR
and SISR limit cycles observed numerically. In the case of
CR, the limit cycle appears to be very coherent in the phase
plane; see Fig. 2�a�. However, a look at the time series as
well as the interspike time interval histogram shown in Fig.
1�c� shows a significant degree of incoherence in the timing
of the successive cycles. On the other hand, in the case of
SISR the phase portrait is visibly affected by the noise, more
so than in CR, see Fig. 2�b�; yet, the interspike time interval
is very coherent, more so than in CR, see Fig. 1�d�. The
sharper coherence level for the SISR limit cycle compared to
the CR limit cycle at the same noise level can also be seen
from the histograms shown in Figs. 1�a�–1�d�.

We note that both mechanisms of noise-induced coher-
ence studied in this paper can have profound implications to
the way biological systems operate in noisy environments or
respond to highly irregular �noiselike� signals. This is espe-
cially true for the SISR mechanism, in which the amplitude
of the noise plays the role of a control parameter and, there-
fore, its variations can lead to observably different coherent
behaviors of the same dynamical system. Moreover, the
SISR mechanism may in fact be used to detect the level of
“irregularity” of a noiselike signal by converting that signal
into a frequency-encoded periodic output. This is highly
reminiscent of the way information is processed throughout
the nervous system. The observed structural instability of
excitable systems with respect to small noisy perturbations is
also a warning to modelers. Quite dramatically, our results
demonstrate that in the presence of noise the underlying dy-
namical model of a coherent oscillatory behavior does not
have to possess a limit cycle, contrary to the currently ac-
cepted modeling dogma �7,35�.
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